形成凝胶:加入柠檬酸和PEG-4000,金属离子与柠檬酸的摩尔比为1:2。混合液在75℃下搅拌形成凝胶。
干燥与煅烧:凝胶在110℃干燥12小时,干燥后的凝胶研磨装入坩埚中,用活性炭作为还原气氛,在950℃下煅烧3小时,制备得α-Zn3(PO4)2:Mn2+,Na+发光材料。
XRD分析:使用X射线衍射仪分析样品的物相结构,与标准卡片(JCPDS No. 29–1390)对比,确认相结构。
荧光光谱分析:在254 nm紫外灯光激发下,使用荧光分光光度计测定样品的激发和发射光谱,激发源为150 W氙灯,测定范围为200-700 nm。
热释光谱分析:样品用普通紫外灯(254 nm)照射5分钟后,放置7分钟,用微型自动控温加热器(加热速率为30℃/min)结合微弱测光仪测定热释光谱。
谱与α-Zn3(PO4)2标准谱相吻合,说明少量Mn2+和Na+掺入并没有改变晶体的物相。进一步分析发现,Zn3(PO4)2: Mn2+Na+的谱线整体向高角度偏移,表明掺杂后晶胞发生了微小的收缩。这是由于在四面体场中,Na+和Mn2+取代了Zn2+的位置,从而引起晶格的缺陷和轻微变形。
余辉衰减曲线 nm紫外灯激发下,α-Zn3(PO4)2: Mn2+, Na+样品的初始发光强度和余辉时间均明显优于α-Zn3(PO4)2: Mn2+样品,目测其余辉时间可达2小时以上。这表明Na+的掺杂显著改善了材料的余辉性能。
掺杂量的增加,样品的余辉性能逐渐增强,在Na+掺杂量为4%时达到最佳,进一步增加Na+掺杂量则会降低余辉性能。这表明适量的Na+掺杂可以有效提高样品的发光性能,而过量的Na+则会导致发光性能的下降。图4. α-Zn
4)2: Mn2+,xNa+(x=2%, 4%, 6%, 7%)的余辉衰减曲线.热释光谱分析热释光谱(TL)的测定可用于剖析材料微观结构的各种缺陷,同时热释峰的
α-Zn3(PO4)2: Mn2+和α-Zn3(PO4)2: Mn2+, Na+样品中分别观察到多个TL峰。Na+掺杂后,低温处(312 K)的TL峰强度显著增强,表明氧空位缺陷浓度增加。分析表明,Na+的掺杂没有产生新的TL峰,但显著提高了原有TL峰的强度。TL峰强度反映了光子从陷阱中释放的数量,峰越强,释放的光子越多,缺陷浓度也越高。图5.α-Zn
4)2: Mn2+, Na+和α-Zn3(PO4)2: Mn2+的热释光谱.5.发光机理发光机理模型(图6):在紫外光激发下,电子由基态跃迁至激发态,部分电子立即返回基态并发光,而另一些电子通过“隧穿”效应进入陷阱并被储存。在热扰动下,这些电子缓慢释放并返回基态发光。Na+的掺杂引起了氧空位缺陷的显著增加,增强了“隧穿”效应,延长了余辉时间。
α-Zn3(PO4)2: Mn2+, Na++绿色长余辉发光材料。研究表明,Na+掺杂可显著提高样品的发光性能,这主要归因于氧空位缺陷浓度的增加,延缓了激发态电子的跃迁时间,从而改善了材料的余辉性能。本研究为开发高性能长余辉发光材料提供了新的方法和理论依据。*因学识有限,难免有所疏漏和谬误,恳请批评指正*